UNIVERSITY OF ILLINOIS
AT URBANA-CHAMPAIGN

Physics 403. Modern Physics Laboratory

Summer 2022 Eugene V. Colla, Alexey Bezryadin

Physics 403 Modern Physics Laboratory

Summer 2022 Teaching Team

Instructors:

Eugene V Colla kolla@illinos.edu

Alexey Bezryadin bezryadi@illinois.edu

Laboratory Specialist:
Todd Moore
tcmoore@illinois.edu

Vishal Ganesan vishalg2@illinois.edu

Nathan Arnold Narnold4@illinois.edu

Support from Paul Kwiat Team

Samantha Isaac isaac5@illinois.edu

Outline

- I. Goals of the course
- II. Teamwork / grades / expectations from you
- III. Syllabus and schedule
- IV. Your working mode In class and "after hours" access Safety, Responsibility Home and away computing
- V. Take a Lab tour
- VI. Let's get started electronic logbooks (New advanced version designed by Rebecca Wiltfong

Course Goals. Primary goals:

Learn how to "do" research

- ✓ Each lab experiment is a mini-research project
- ✓ How are experiments carried out?

The procedures aren't all written out

The questions are not in the back of the chapter

The answers are not in the back of the book

You will have to learn to guide your own activities

✓ Use of modern tools and modern analysis and data-recording techniques

Course Goals. Primary goals:

- Learn how to document your work
 - Online electronic logbook *
 - Online saving data and projects in student area on server
 - Using traditional paper logbooks
 - Making an analysis report
 - Writing formal reports*
 - Presenting your findings orally*

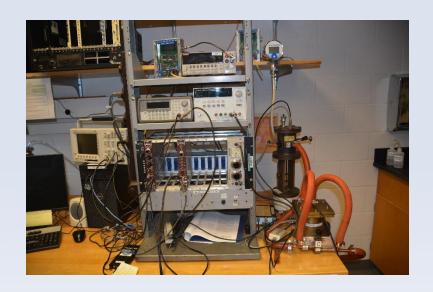
Course Goals. Secondary goals:

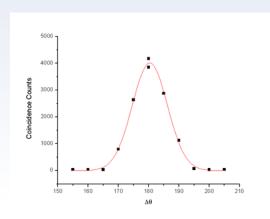
- Learn some modern physics
 - Many experiments were once awarded by Nobelprize
 - They touch on important themes in the development of modern physics
 - Some will provide additional insight to understand advanced courses you have taken

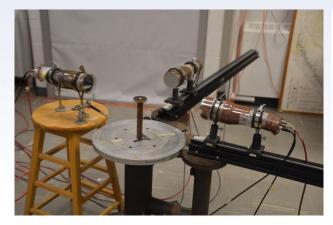
The Experiments. Three main groups

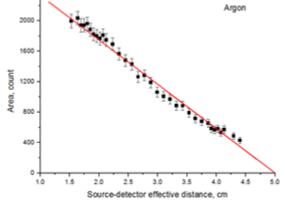
Nuclear / Particle (NP)

Atomic / Molecular / Optics (AMO)

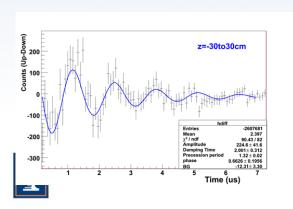

Condensed Matter (CM)

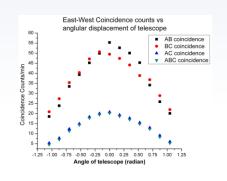

You will do the experiment from all these groups




Nuclear / Particle (NP)

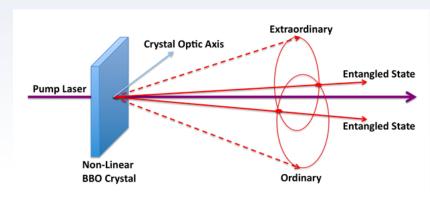
- Alpha particle range in gasses
- γ-γ correlation experiment
- γ-spectroscopy

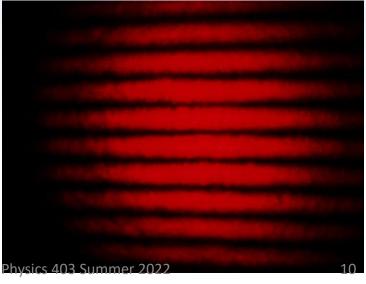



- Nuclear / Particle (NP)
 - Cosmic ray muons: *

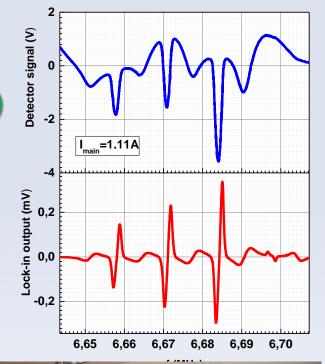
Lifetime, capture rate, magnetic moment

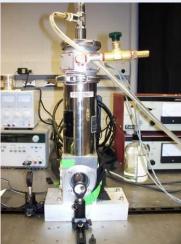
- Angular distribution of cosmic rays
- Mössbauer spectroscopy
- * Experiment is not offered in SU2022




Atomic/Molecular/Optics (AMO)

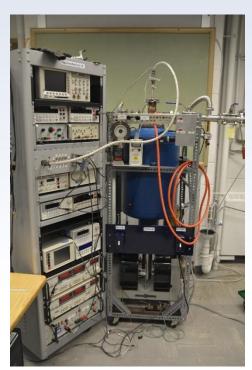
- Berry's phase
- Quantum erasure
- Quantum Entanglement



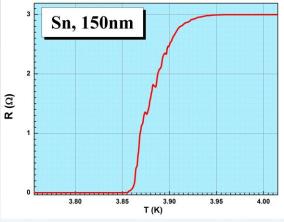


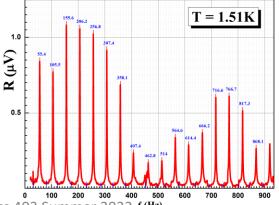
Atomic/Molecular/Optics (AMO)

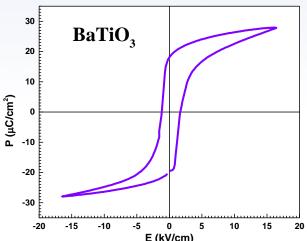
- Optical pumping of rubidium gas
- Fluorescence spectroscopy

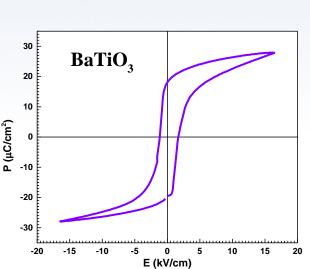


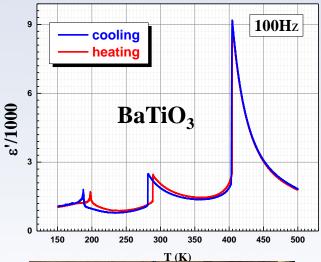

- Condensed Matter (CM)
- Superconductivity
- Tunneling in superconductors
- 2nd sound in ⁴He superfluid state



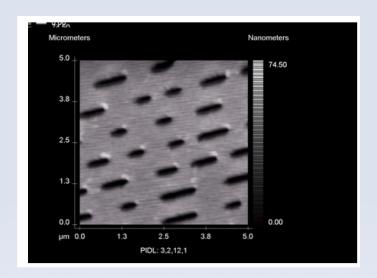



New: Superconductivity and magnetic field

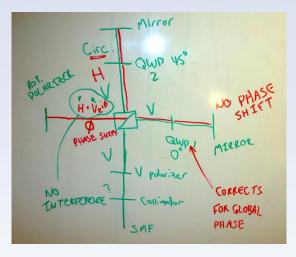




- Condensed Matter (CM)
- Ferroelectrics and ferroelectric phase transition
- **Pulsed NMR**
- **Calibration of temperature** sensors



- Condensed Matter (CM)
- Special Tools:
- Vacuum film deposition
- Atomic Force Microscope
- Polarizing microscope



The "manuals"

- Many are just guides
- An only few purchased experiments have "real" manuals
- We serve as your guides ... like real research ...
- We have prepared materials explaining how to do the experiments and data analysis, and you can find all these materials and examples of data analysis on the common drive.

OPTICAL PUMPING OF RUBIDIUM OP1-A

Outline

- J. Goals of the course
- II. Teamwork / grades / expectations from you
- III. Syllabus and schedule
- IV. Your working modeIn class and "after hours" accessSafety, ResponsibilityHome and away computing
- V. Take a Lab tour!
- VI. Let's get started electronic logbooks digital scopes

Grading: Distribution of "740" points

ASSIGNMENT	Points
Expt. documentation : elog reports, shift summaries, plot quality; paper logbooks	120 Total 60 / cycle
Formal reports: physics case, quality of results, depth of analysis, conclusions	400 Total 100 / report
1st Oral report: motivation, organization of presentation; fielding questions	100 Total
Final Oral Presentation ≡ Final Exam	120
Total	740
Effective point total will be	740

The grading scale will be a percentage out of "740":

Letter grading scale is approximately 97% = A+, 93% = A, 90% = A-, 87% = B+, 83% = B, 80% = B-, etc

(deadline for resubmissions and for report #4 August 6th 2022)

You can RESUBMIT one lab report to improve your grade

Grading: a piece of history and analysis of the results

Submission of Lab-Reports

- Due dates as on syllabus at midnight
- The reports should be uploaded to the server:
- https://my.physics.illinois.edu/courses/upload/
- Accepted formats: PDF* or MS-Word
- For orals MS-PowerPoint* or PDF

* preferable

Absences

If you are sick, let Eugene know by email (<u>kolla@Illinois.edu</u>). Don't come
in and get others sick. We are working side-by-side in a close environment
for many hours.

 COVID19 comment: if the student assigned to be "in person" can not attend the session he/she can be replaced by their partner and continue to work "online".

 You can "make up" time by arranging with us and you can have access to the rooms. We will be accommodating.

Absences. Excuse Policy.

- You can be excused from only one missed assignment, and only if you provide medical or any other acceptable documentation¹.
- If the excused you have missed the oral presentation (oral #1), you
 have to discuss this with us, and we will arrange the date for your
 oral talk.
- The Final Oral cannot be excused, as it is equivalent to a final exam.
 You cannot pass the course without credit for this assignment²

1. Student Code: https://studentcode.illinois.edu/article1/part5/1-501/

2. Ibid: https://studentcode.illinois.edu/article3/part2/3-201/

Late Reports

- Policy for late reports
 - You can have ONE "late ticket" for a "free" delay of up to 3 business days, but you must tell us you are using the ticket
 - > Reports are due at midnight on the date shown on the syllabus. After that we will charge:
 - 5 points for up to 1 week late. 10 points for up to 2 weeks late.

After that, it's too late.

C1-Ex1(2.16.22)

Outline

- . Goals of the course
- II. Teamwork / grades / expectations from you
- III. Syllabus and schedule
- IV. Your working mode
 In class and "after hours" access
 Safety, Responsibility
 Home and away computing
- V. Take a Lab tour!
- VI. Let's get started electronic logbooks digital scopes

Syllabus

				Date Da	Day	Activity		Lectures: 10am Journal club: 3pm	Note	Due days
				Date	Day	8am-noon	1pm-5pm			
Cycles			1	6/14	Tuesday	Orientation		About Phy403		
	ſ		2	6/15	Wednesday	Cycle 1-1	Cycle 1-1	OriginPro, ROOT Intro		
			3	6/21	Tuesday	Cycle 1-1	Cycle 1-1	Error analysis		
			4	6/22	Wednesday	Cycle 1-1	Cycle 1-1	Written Reports		
	A		5	6/28	Tuesday	Cycle 1-2	Cycle 1-2	Ferroelectricity		
			6	6/29	Wednesday	Cycle 1-2	Cycle 1-2	Superconductivity		C1-Ex1(7.01.2022)
	ļ		7	7/05	Tuesday	Cycle 1-2	Cycle 1-2	Oral Reports/Talks		
			8	7/06	Wednesday	Cycle 2-1	Cycle 2-1	Lock-in Amps and FT		
	\		9	7/12	Tuesday	ORALS Cycle 1				
O	4		10	7/13	Wednesday	Cycle 2-1	Cycle 2-1	Optical Spectroscopy	J	C1-Ex2(7.15.2022)
•	⊣		11	7/19	Tuesday	Cycle 2-1	Cycle 2-1	Nuclear Physics		
			12	7/20	Wednesday	Cycle 2-2	Cycle 2-2	AFM		
			13	7/26	Tuesday	Cycle 2-2	Cycle 2-2	Entanglement		C2-Ex1(7.29.2022)
	l		14	7/27	Wednesday	Cycle 2-2	Cycle 2-2	High Energy Physics		
			15	8/02	Tuesday	FINAL ORALS				
			16	8/04	Thursday			READING DAY		C2-Ex2(8.06.2022)

* Lecture topics are subject to change

	NP A. Cosmic Muon Stand i. Muon lifetime ii. Capture rate iii. Magnetic moment B. Alpha range C. Gamma Gamma D. Muon telescope E. Mössbauer spectroscopy	CM A. Ferro 1 B. Ferro 2 (imaging) C. 2 nd sound of ⁴ He D. Hysteresis loops E. Tunneling F. Superconductivity #2	Atomic + CM A. Optical pumping B. Superconductivity C. Mutual inductance D. pNMR	Optics A. Quantum Table i. Berry's phase ii. Quantum erasure iii. Entanglement B. Fluorescence spectroscopy C. AFM	
	Alexey	Eugene	Vishal	Vishal, TAs from Kwiat Lab	
C1-1	1,5	2,4	3,6		
C1-2		2,5	1, 4	3,6	
C2-1					
C2-2					

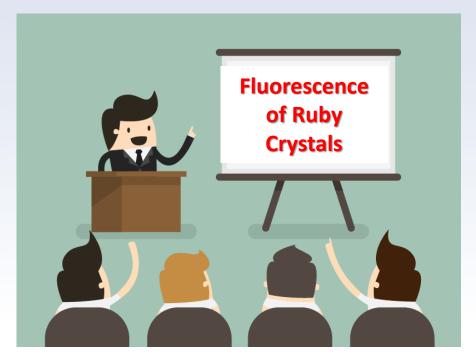
Cycle	#	Experiment
C1-1	2,4	Second sound
	1, 5	Alpha range
	3, 6	Optical Pumping

Assignment of experiments

- 2 cycles with 2 experiments
 - → you will have different partners

→ joint team reports and elogs but oral

presentations will be done by each


student individually

Summer 2022 Orals Physics 403

After 2 experiments (1 cycle) we will have an oral presentation session. The topic of the presentation will be chosen from the experiments done in that cycle.

Outline

- I. Goals of the course
- II. Teamwork / grades / expectations from you
- III. Syllabus and schedule
- IV. Your working mode

In class and "after hours" access
Safety, Responsibility
Home and away computing

- V. Take a Lab tour!
- VI. Let's get started electronic logbooks digital scopes

Lab Access

Use Your ID Card to Access the Lab
You can access the Lab not only on "Lab days"
Late time rules:

You can stay in the Lab until 8pm but need to work with partner

After 8pm and on weekend days – you have to discuss this schedule with your instructor and in general it is preferable to avoid working after 8 pm and on weekends

Safety is your responsibility!

Hazards: high voltage, radioactive sources,

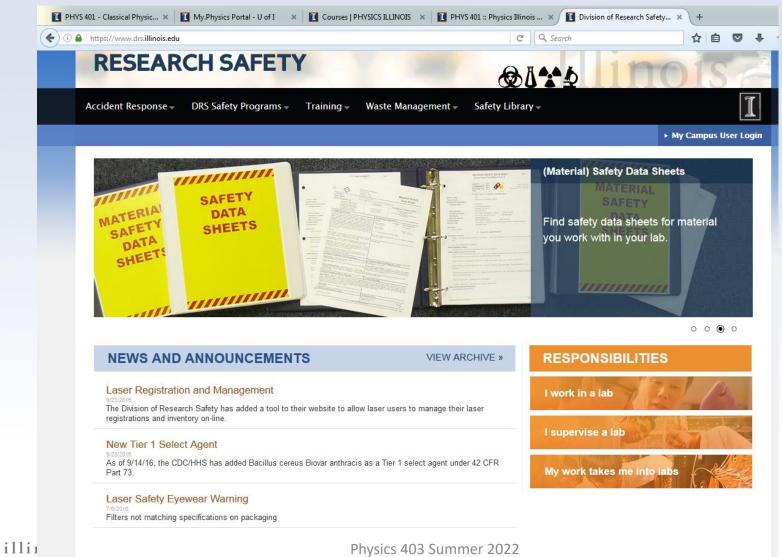
cryogens, chemical materials, high pressure

In class work and ≝after hours" access work requires responsible conduct with regards to

- (I) safety/hazards and with
- (II) equipment

Discuss potential hazards at the beginning of each experiment with an instructor or TA

When in doubt stop and ask



Follow Directly the Recommendations of Safety Working

https://www.drs.illinois.edu/

Follow Directly the Recommendations of Safety Working

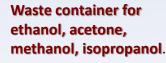
Chemical Waste Collection and Storage

Before generating chemical waste, the researcher should determine how it will be collected and stored and obtain the necessary equipment (containers, labels) in advance. The choice of procedures depends on the type of waste and its final disposition. This section explains how to determine the final disposition of waste, select the appropriate waste container, and store waste in the lab or work area. It also suggests waste minimization strategies.

Determining How to Dispose of a Chemical Waste

The final disposition of a chemical waste is determined by the answers to a series of questions:

- Step 1. Is the waste <u>Contaminated Debris</u> (glassware, paper towels, clean-up materials), or is it a chemical or chemical mixture? If it is contaminated debris: Go to Step 5.
 If it is a chemical or chemical mixture: Go to Step 2.
- Step 2. Is the chemical a DEA (Drug Enforcement Agency) controlled substance? (Refer to the <u>DEA list controlled substances</u> (Refer to the <u>DEA Controlled Substances</u>)
 Yes: Refer to the <u>DEA Controlled Substances</u> Guide for disposal procedures.
- Step 3. Is the chemical a solid (not liquid or gas)?


No: Go to Step 3.

- Yes: Collect and store the waste as described in the waste container and storage guidelines listed below and dispose of it through the Division of Research Safety (DRS) chemical waste disposal program. See the section Procedures for Requesting Chemical Waste Disposal for the disposal procedures. (No solid chemical waste, hazardous or non-hazardous, should be placed in the regular trash.)

 No: Go to Step 4.
- Step 4. Is the chemical a liquid non-hazardous waste as listed in the section <u>Liquid Non-Hazardous Chemical Waste Disposal</u>? Yes: The chemical may be poured down the sanitary sewer (sink drain) with copious amounts of water. No: Collect and store the waste as described in the waste container and storage guidelines listed below, and dispose of it through the DRS chemical waste disposal program. See the section <u>Procedures for Requesting Chemical Waste Disposal</u> for the disposal procedures.
- Step 5. Is the contaminated debris laboratory glassware (broken and unbroken)?
 Yes: See the Laboratory Glassware Waste Disposal section.
 - No: Go to Step 6.
- Step 6. Is the debris contaminated with a substance listed in the section <u>Liquid Non-Hazardous Chemical Waste Disposal</u>? Yes: The contaminated debris can be disposed of in the regular trash.
 - No: Collect and store the contaminated debris as described in the waste container and storage guidelines listed below: dispose

Waste container for mineral spirits.

Waste containers for chemicals used in NMR experiment

Follow Directly the Recommendations of Safety Working

Laboratory Sharps

Definition

Materials that qualify as "sharps" are defined at the state level and shall be disposed of as Potentially Infectious Medical Waste (PIMW). In Illinois, the Illinois Environmental Protection Agency (IEPA) has designated the following material (used or unused) as sharps:

- Any medical needles,
- Syringe barrels (with or without needle),
- Pasteur pipettes (glass),
- Scalpel and razor blades,
- Blood vials,
- Microscope slides and coverslips,
- •Glassware contaminated with infectious agents.

NEVER dispose of these items in **SDGs**:

- •Plastic items (except for syringes),
- •Beverage containers (no pop cans!),
- •Non-biologically contaminated laboratory glassware,
- Solvent/chemical bottles,
- ·Light bulbs,
- Any paper materials,
- Pipette tips,
- Plastic pipettes,
- ·Aerosol cans or cans of any type,
- Scintillation vials,
- •Any item with liquid (except for blood in vacutainer tubes).

Waste container for sharps

Outline

- V. Take a Lab tour! For those online it will be a virtual tour.
- VI. Let's get started electronic logbooks digital scopes

Outline

- J. Goals of the course
- II. Teamwork / grades / expectations from you
- III. Syllabus and schedule
- IV. Your working mode
 In class and "after hours" access
 Safety, Responsibility
 Home and away computing
- V. Take a Lab tour!
- VI. Let's get started
 electronic logbooks
 digital scopes

- Work together
- Write down the equipment used
- Make a diagram of the setup
- Note the settings of dials, switches, gauges

 Use a software drawing program to make a detailed sketch (PowerPoint works for this very well)

- Use the eLog (see next).
- Write down what you did in real sentences.
- Provide enough detail that you can reconstruct later
 what you did!
- How will you look at the data later?
- Do you have enough information?
- Did the equipment perform as expected?

- Many experiments require you to "change and measure" something by hand
 - Make a <u>table</u> in a <u>paper logbook</u> or put the data directly into electronic worksheet (*preferable*).
 - Make a "quick sketch" of your by plotting the data using
 OriginPro or other software

Looking on the graph you can answer the questions:

- Do you have enough points?
- Do you have any obvious anomalies?
- You can repeat points but do not throw them out.
 Use other measurements to check reliability

Many experiments have built-in, computer-based data

acquisition (DAQ)

You will not have time to fully

understand the DAQ, but

- Be sure you know functionally what it is doing ask
- A good idea is to make test measurements of something you know
- As before, anomalies? enough points? uncertainties?

Where to exchange, store and retrieve course information. P403 Lab server

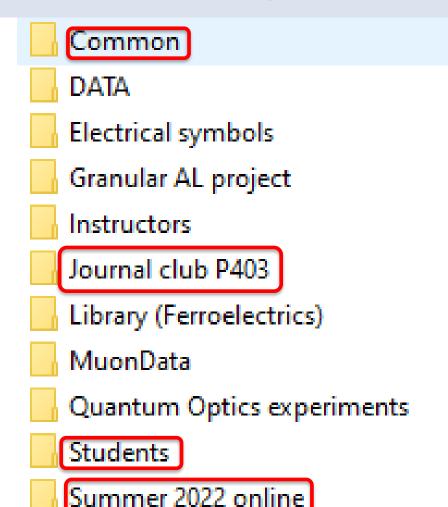
\\engr-file-03.engr.illinois.edu\PHYINST\APL Courses\PHYCS403

Connecting to the PHYS403 server

Connect to VPN following the instructions on the UIUC VPN website:

https://techservices.illinois.edu/services/virtual-private-networkingvpn/download-and-set-up-the-vpn-client

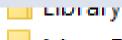
To connect to the PHYS403 Server:


- Connect to the VPN first, then enter the following as the share to connect to:
 - Mac users: Open Finder: Go: Connect to Server, type in address:
 smb://engr-file-03.engr.illinois.edu/PHYINST/APL Courses/PHYCS403
 - Windows users: Open Windows Explorer, type in address:
 \engr-file-03.engr.illinois.edu\PHYINST\APL Courses\PHYCS403
- When prompted for username and password, enter:
 "Uofl\[your netID]" and "[your netID password]"

Where to exchange, store and retrieve course information. (i) Your data, projects, tables etc

\\engr-file-03\PHYINST\APL Courses\PHYCS403

There is a lot useful and not very useful stuff in many folders you can find there

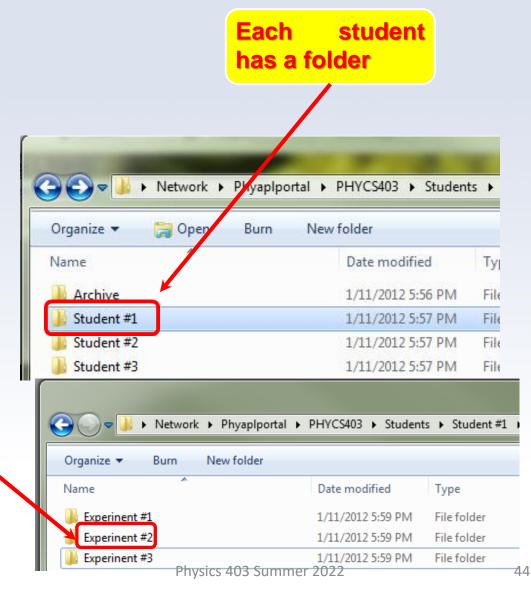

"Useful" folders are shown in red frames

Summer 2022 online

Where to exchange, store and retrieve course information. (i) Your data, projects, tables etc

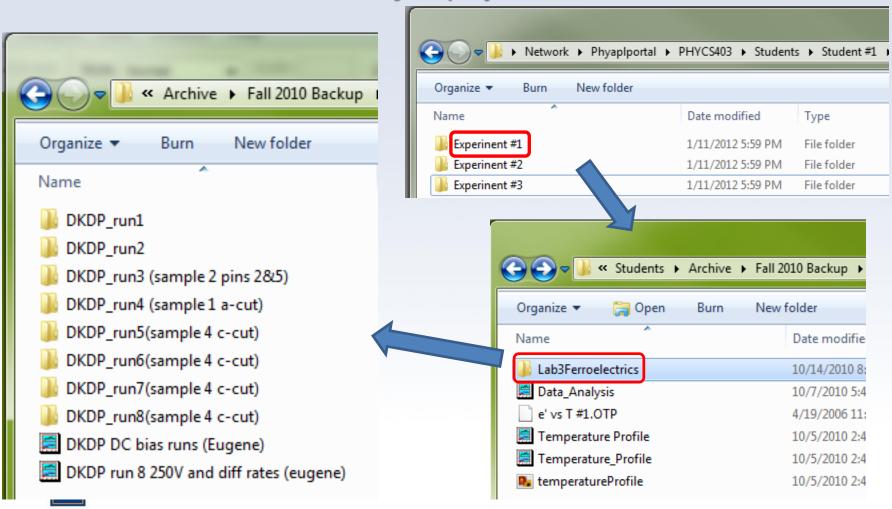
\\engr-file-03\PHYINST\APL Courses\PHYCS403

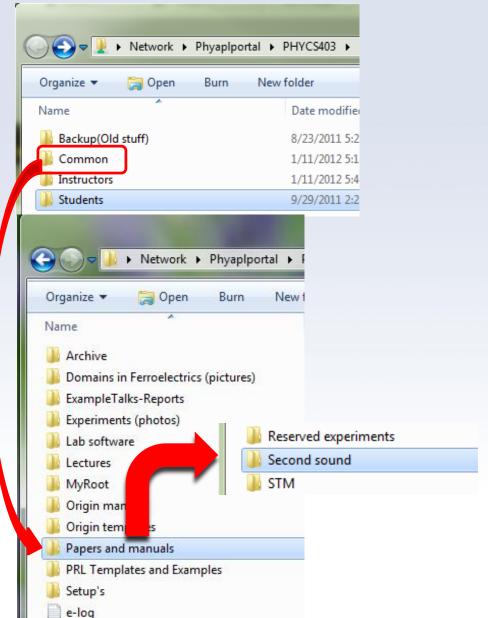
MuonData

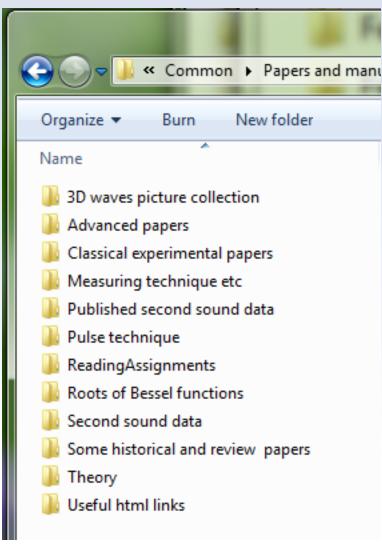

Students

Summer 2020 online

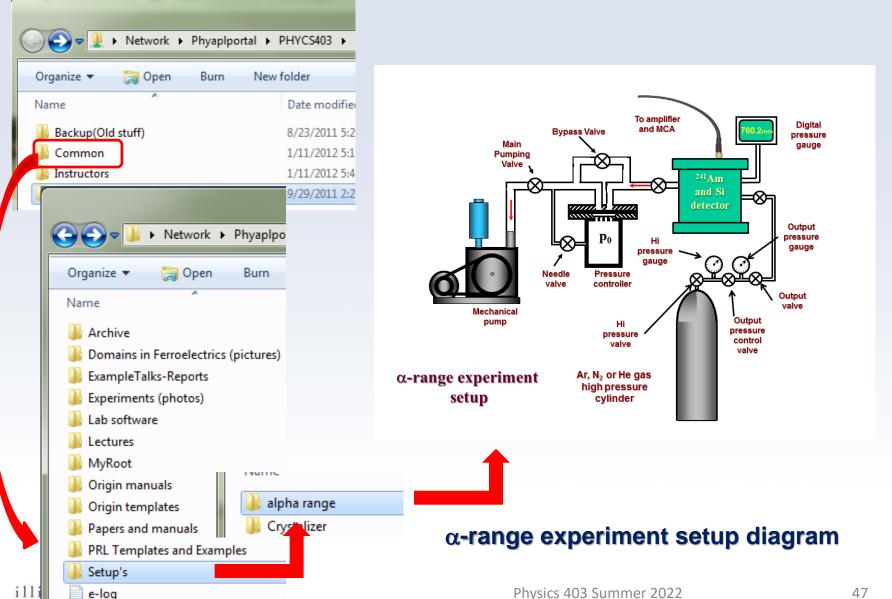
Summer research


Store all experiment related materials in corresponding folder

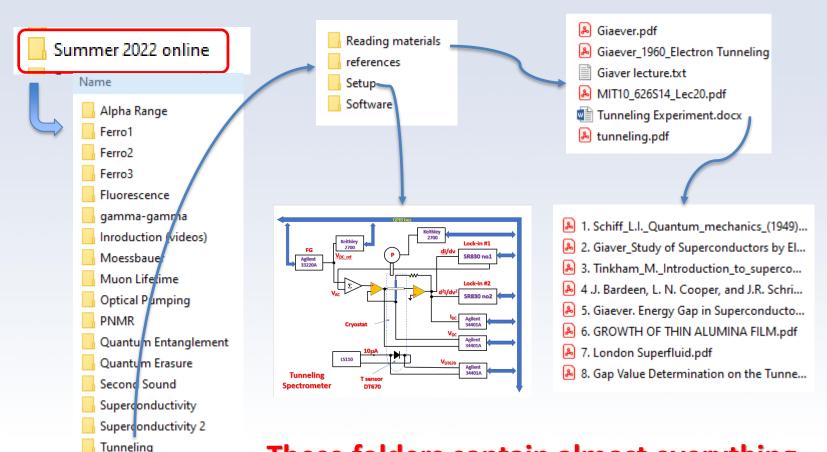



Where to exchange, store and retrieve course information. (i) Your data, projects, tables etc

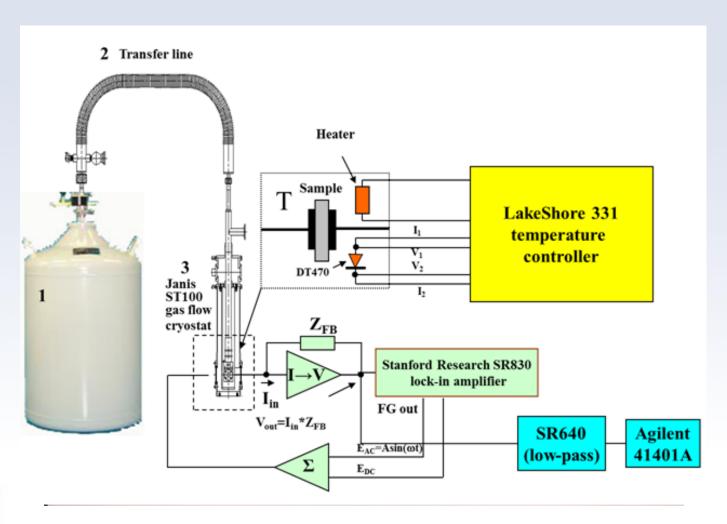
An example of the "smart" structure of folders containing the raw data and data analysis projects



Manuals, papers, setup diagrams and other useful materials

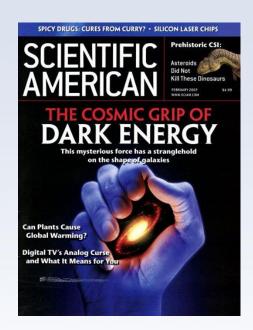


Manuals, papers, setup diagrams and other useful materials


Manuals, papers, *setup diagrams* and other useful materials in Summer 2022 online folder

These folders contain almost everything you need to work on experiment

Setup diagrams – do not use cellphones to take the image of the setup from manual – for most setups we have PowerPoint projects with setups.



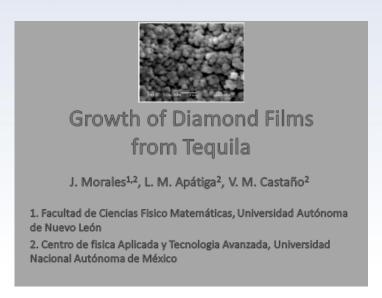
"Journal club"

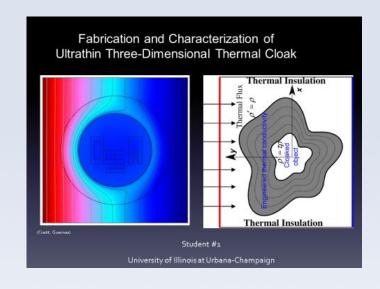
Lectures – Tuesdays 3pm Journal Club – Thursdays 3pm

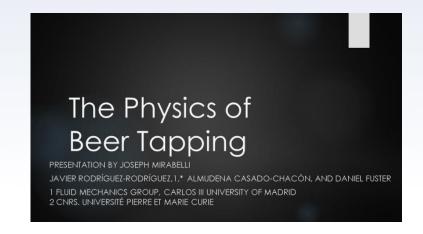
http://ajp.aapt.org/#mainWithRight

http://www.nature.com/nature/index.htm

http://www.scientificamerican.com/


http://www.sciencemag.org/journals




http://publish.aps.org or http://prola.aps.org/

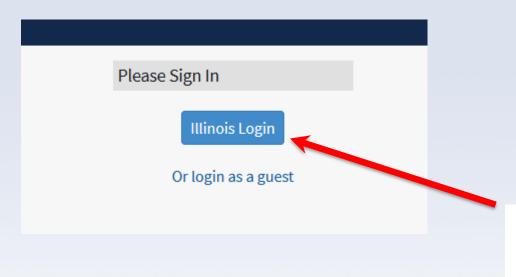
"Journal club"

"Journal club"

Journal Access


If you cannot access journal papers using VPN, go to UIUC's library proxy test site and enter the address of the paper you want to read:

http://www.library.illinois.edu/proxy/test/


Recommended journal websites

- American Physical Society Journals: https://journals.aps.org/about
- Nature: http://www.nature.com/nature/index.html
- Science: http://www.sciencemag.org/journals
- American Journal of Physics: http://scitation.aip.org/content/aapt/journal/ajp

Use your University Username and Password

ELOGS

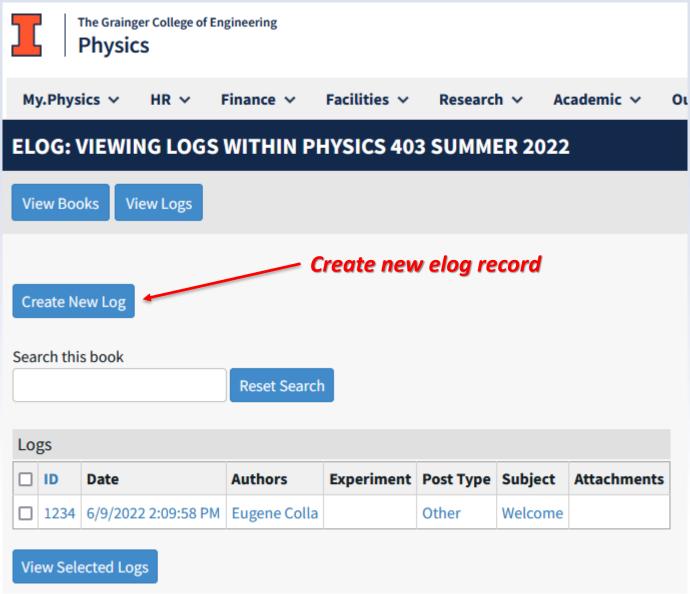
View Books

View Logs

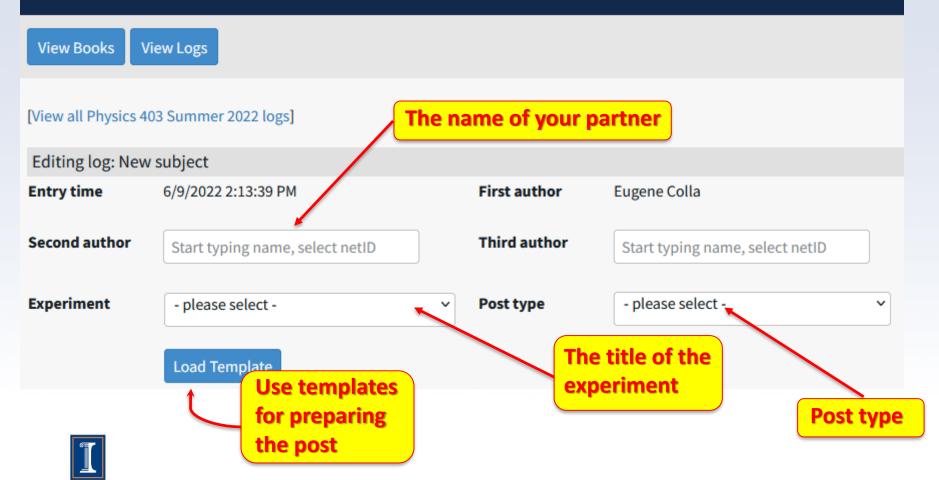
Your eLog Books

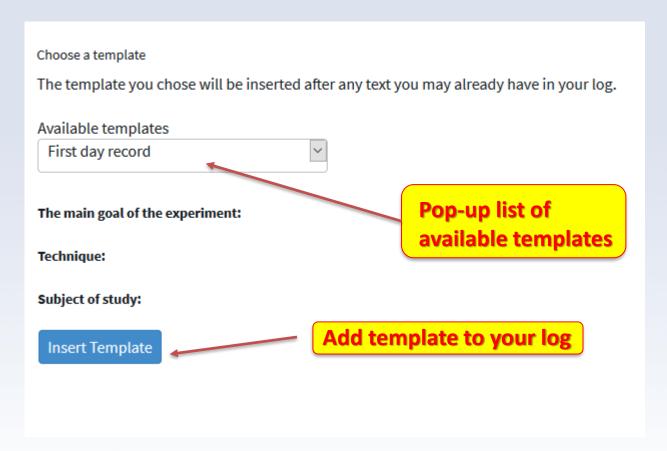
Physics 403 Spring 2022 rwiltfon 1/5/2022 2:02:44 PM

Physics 403 Fall 2021 kolla 8/23/2021 10:17:42 AM


Physics 403 Summer 2021 kolla 6/2/2021 5:10:48 PM

Physics 403 Summer 2022 Kolla 5/31/2022 10:41:49 AM


Physics 403 Spring 2021 rwiltfon 1/12/2021 2:55:39 PM


Summer 2022 elog folder

ELOG: EDITING LOG FROM PHYSICS 403 SUMMER 2022: NEW SUBJECT

e-logs: Making a post...

How to use it

- Pause and summarize your work at natural stopping points in the action. This is useful for particular findings and measurement sequences.
- Along the way, save data, plots, scope shots to your folder on the server.
- Near the end of the class, add a summary/conclusion, indicate future directions, and make sure the e-log provides a rather complete overview of the highlights of your work. Upload your plots, scope shots, etc. and describe the data.

e-logs: Making a post ...

Author:	Your name and your partner's name
Experiment:	General
Post Type:	How-To
Subject:	Day [#]: brief description of work

Goal: Be specific. Not, "Learn about experiment," but, for example, "In helium below temperatures of 2.17K, a second sound due to thermal effects becomes measurable. We will measure second sound using a resonant cavity..."

Settings / Equipment Notes: Note important environmental and experimental parameters such as atmospheric pressure, settings on equipment, etc.

[Time Range 1]: Give time range, not just "before tea."

- Note important steps and results
- Include plots, photos, or scope shots in attachments below
- Use bullet points to make it easy to read

[Time Range 2]: ...

Conclusions & Future Plans: What did you find and what is the next step? Be specific. Not, "We measured decay times," but, for example, "Ruby #2 sample with higher concentration chromium was observed to decay with a form..."

Some General Physics 403 Rules.

No Food or Drinks in Lab! Except ESB5105

